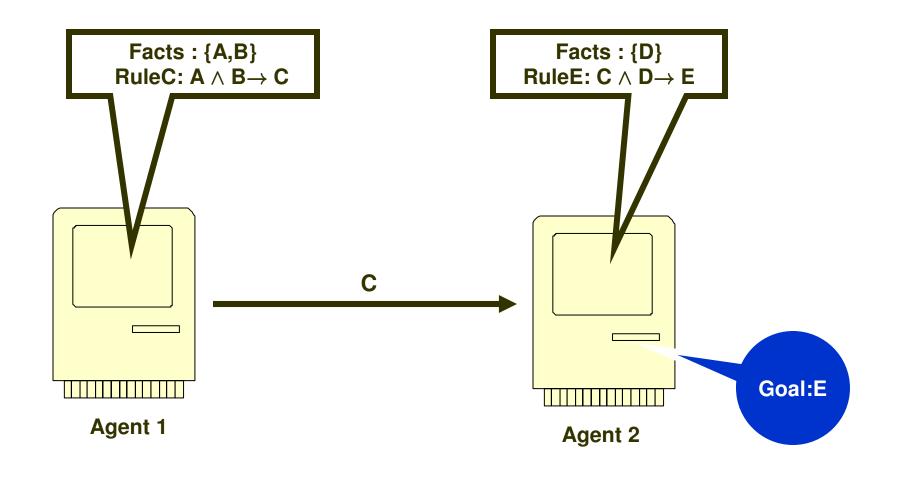
Verifying Resource Requirements for Distributed Rule-Based Systems

Natasha Alechina, Brian Logan Nguyen Hoang Nga, and Abdur Rakib

RuleML-2008
Orlando, Florida: October 30-31, 2008

Outline

- Rule based system
- Challenges to application developers
- Distributed rule based system
- Resources and Actions
- Measuring resources
- The model of distributed rule-based systems
- Example
- Verifying resource bounds
- Experimental results


Rule based system

- A rule based reasoning system is a particular type of reasoning system.
- The system mainly consist of three parts :
 - A set of condition-action rules specifying which action(s) to perform when a given condition is true;
 - A set of facts which constitute the current state of the system;
 - A rule engine which matches the rule conditions against the facts and fires those rules which match.

Challenges to application developers

- How to ensure the following properties of rule-based system designs
 - correctness: will a rule-based system produce the correct output for all legal inputs;
 - termination: will a rule-based system produce an output at all;
 - response time: how much computation will a rule-based system have to do before it generates an output.
- These problems become even more challenging in the case of distributed rule-based systems.

Distributed rule based system

Resources and Actions

Time : How many inference steps does the system

need to perform, in parallel?

Communication: How many messages do the agents need to

exchange?

Actions

Rule: If antecedents of a rule are present in agent's working memory but consequent is not in a state s then consequent will be added to the agent's working

memory in the successor state upon firing that rule;

Copy: Agent can copy facts from other agents memory, if it is

not present in its working memory;

Idle: Agent leaves its configuration unchanged.

Resources and Actions contd.

Time	Agent1	Agent2	#Messages	
t _o	{A,B}	{D}	0	
Operation:	RuleC	Idle	0	
t ₁	{A,B,C}	{D}	0	
Operation:	ldle	Сору	1	
t_2	{A,B,C}	{ C , D }	1	
Operation:	ldle	RuleE	1	
t ₃	{A,B,C}	{C,D,E}	1	

Measuring resources

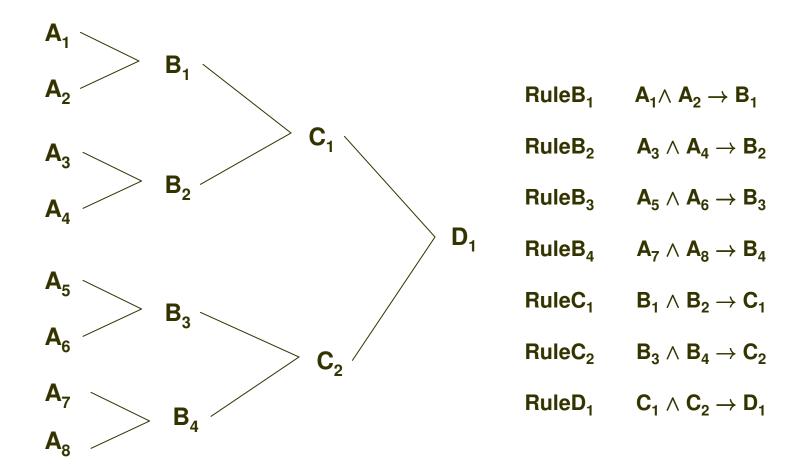
- A problem is considered to be solved if one of the agents has derived the goal
- We take the time complexity of a derivation to be the total number of steps by the system
- Our model of communication complexity is based on the number of facts exchanged by the agents
- The communication complexity of a joint derivation is then the (total) number of Copy operations in the derivation.

The model of Communicating rule-based systems

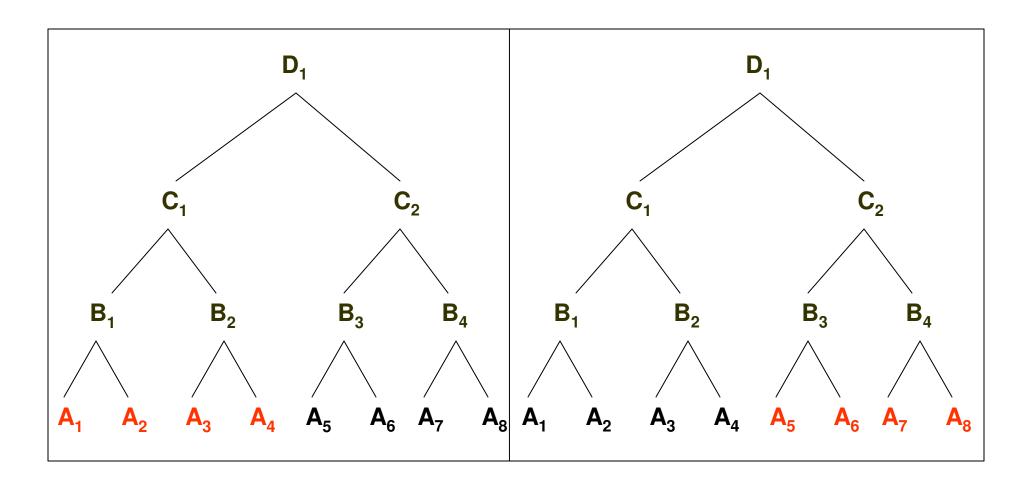
The framework is based on L_{CRB}

- Let A = {1,...,n_{Ag}} be the set of all agents, and P a finite common alphabet of facts.
- Let P_i be a finite set of rules of the form p₁ ∧ ... ∧ p_n → p, where n≥ 0, p_i, p ∈ P for all i ∈ {1,...,n} and p_i ≠ p_j for all i ≠ j.
- Let $cp_i^{=n}$ denotes that the value of agent i's communication counter is n for all $n \in \{0,...,n_c(i)\}$ and $i \in A$, where $n_c(i)$ is the upper bound of Copy action that agent i can perform.

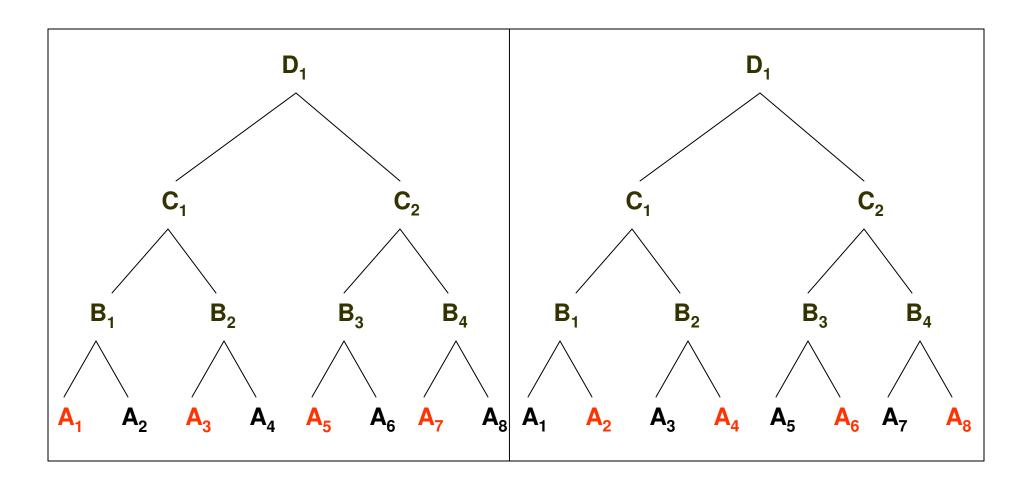
The model of Communicating rule-based systems contd.


The syntax of L_{CRB} includes the temporal operators of CTL with belief operators and communication counters

$$\phi$$
 ::= \top | cp_i=n | B_i p |B_i ρ | \neg ϕ | $\phi \land \psi$ | X ϕ | ϕ U ψ | A ϕ


Other classical abbreviations for \bot , \lor , \to and \leftrightarrow , and temporal operations are as usual.

The semantics of L_{CRB} is defined by L_{CRB} transition systems which are based on ω -tree structures.


Example

Example contd.

Example contd.

Example contd.

#TimeStep	Agent 1	Agent 2	#Messages	
1	{A1,A2,A3,A4}	{A5,A6,A7,A8}	0,0	
operation:	Rule B2	Rule B4		
2	{A1,A2,A3,A4, B2}	{A5,A6,A7,A8,B4}	0,0	
operation:	Rule B1	Rule B3		
3	{A1,A2,A3,A4, B2,B1}	{A5,A6,A7,A8,B4, B3}	0,0	
operation:	Rule C1	Rule C2		
4	{A1,A2,A3,A4, B2,B3, C1}	{A5,A6,A7,A8,B4, B3, C2}	0,0	
operation:	Idle	Copy (C1 from Agent 1)		
5	{A1,A2,A3,A4, B2,B3, C1}	{A5,A6,A7,A8,B4, B3, C2, C1}	0,1	
operation:	ldle	Rule D1		
6	{A1,A2,A3,A4, B2,B3, C1}	{A5,A6,A7,A8,B4, B3, C2, C1, D1}	0,1	

Verifying resource bounds: Model checking (MOCHA)

- The specification language of Mocha is ATL, which includes CTL.
- We can express properties such as 'agent *i* may derive belief α in *n* steps' as EX^n $tr(B_i\alpha)$ where $tr(B_i\alpha)$ is a state variable encoding of the fact that is present in the agent's working memory.
- To obtain the actual derivation, we can verify an invariant which states that $tr(B_i\alpha)$ is never true, and use the counterexample trace to show how the system reaches the state where α is proved.
- To bound the number of messages used, we can include a bound on the value of the message counter of one or more agents in the property to be verified.

Experimental results

Case	Agent 1	Agent 2	# steps	# messages agent 1	# messages agent 2
1.	$A_1 - A_8$		7	-	-
2.	$A_1 - A_7$	A_8	6	0	3
3.	$A_1 - A_7$	A_8	6	1	2
4.	$A_1 - A_7$	A_8	7	1	1
5.	$A_1 - A_7$	A_8	8	1	0
6.	$A_1 - A_6$	A_{7}, A_{8}	6	0	2
7.	$A_1 - A_6$	A_{7}, A_{8}	6	1	1
8.	$A_1 - A_6$	A_7, A_8	7	1	0
9.	$A_1 - A_4$	$A_5 - A_8$	5	1	0
10.	A_1, A_3, A_5, A_7	A_2, A_4, A_6, A_8	7	2	3
11.	$A_{1}, A_{3}, A_{5}, A_{7}$	A_2, A_4, A_6, A_8	11	0	4

Resource requirements for optimal derivation in 8 leaves cases $_{16}$

Case	Agent 1	Agent 2	# steps	# сору 1	# сору 2
1.	$A_{1} - A_{16}$		15	-	-
2.	$A_{1} - A_{15}$	A_{16}	12	0	6
3.	$A_{1} - A_{15}$	A_{16}	12	1	4
4.	$A_{1} - A_{15}$	A_{16}	13	1	3
5.	$A_{1} - A_{15}$	A_{16}	14	1	2
6.	$A_1 - A_{15}$	A_{16}	15	1	1
7.	$A_1 - A_{15}$	A_{16}	16	1	0
8.	$A_{1} - A_{14}$	A_{15}, A_{16}	11	0	5
9.	$A_1 - A_{14}$	A_{15}, A_{16}	11	1	4
10.	$A_1 - A_{14}$	A_{15}, A_{16}	12	1	3
11.	$A_{1} - A_{14}$	A_{15}, A_{16}	13	1	2
12.	$A_1 - A_{14}$	A_{15}, A_{16}	14	1	1
13.	$A_1 - A_{14}$	A_{15}, A_{16}	15	1	0
14.	$A_1 - A_{12}$	$A_{13}, A_{14}, A_{15}, A_{16}$	11	0	4
15.	$A_1 - A_{12}$	$A_{13}, A_{14}, A_{15}, A_{16}$	11	1	2
16.	$A_1 - A_{12}$	$A_{13}, A_{14}, A_{15}, A_{16}$	12	1	1
17.	$A_1 - A_{12}$	$A_{13}, A_{14}, A_{15}, A_{16}$	13	1	0
18.	$A_{1} - A_{3}, A_{5} - A_{7}, A_{9} - A_{11}, A_{13} - A_{15}$	A_4, A_8, A_{12}, A_{16}	13	2 4	6
19.	$A_1 - A_3, A_5 - A_7, A_9 - A_{11}, A_{13} - A_{15}$	A_4, A_8, A_{12}, A_{16}	19	4	0
20.	$A_1, A_3, A_5, A_7, A_9, A_{11}, A_{13}, A_{15}$	$A_2, A_4, A_6, A_8, A_{12}, A_{14}, A_{16}$	13	4	5
21.	$A_1, A_3, A_5, A_7, A_9, A_{11}, A_{13}, A_{15}$	$A_2, A_4, A_6, A_8, A_{12}, A_{14}, A_{16}$	23	0	8

Conclusions

 We analyze the time and communication resources required by a system of rule-based reasoning agents to achieve a goal

 We show how L_{CRB} transition systems can be encoded as input to the Mocha model-checker and how properties can be verified automatically

We described results of some experiments on a synthetic example which show interesting trade-offs between time required by the agents to solve the problem and the number of messages they need to exchange.

Thanks!