On Extending RuleML for Modal Defeasible Logic

Duy Hoang Pham^{1,2}, Guido Governatori¹, Simon Raboczi², Andrew Newman² and Subhasis Thakur^{1,2}

NICTA

University of Queensland

Orlando, 31 October 2008

Australian Government

Department of Broadband, Communications and the Digital Economy

UNSW

NICTA

8 Australian Research Council

What is a rule?

2 / 17

A rule is a binary relationship between a set of 'expressions' and an 'expression'

A rule is a binary relationship between a set of 'expressions' and an 'expression'

What's the strength of the relationship?

What's the type of the relationship?

A rule is a binary relationship between a set of 'expressions' and an 'expression'

What's the strength of the relationship?

What's the type of the relationship?

Guido gives a talk on Friday 31 October at 9:15am

BEL Guido gives a talk on Friday 31 October at 9:15am

INT Guido gives a talk on Friday 31 October at 9:15am

OBL Guido gives a talk on Friday 31 October at 9:15am

Guido gives a talk on Friday 31 October at 9:15am

Normal Modal Logic

- propositional logic

Guido gives a talk on Friday 31 October at 9:15am

Normal Modal Logic

- propositional logic

- - 1 + 2 + 3 = Logical omniscience (and expected side-effects)
 - 1 = monotonic

Being Lazy

Factual omniscience and (non-)monotonic reasoning

 $PhD \rightarrow Uni$

4 / 17

Factual omniscience and (non-)monotonic reasoning

 $PhD \rightarrow Uni$ $Weekend \rightarrow \neg Uni$ $PublicHoliday \rightarrow \neg Uni$ $Sick \rightarrow \neg Uni$

Factual omniscience and (non-)monotonic reasoning

 $PhD \rightarrow Uni$ $Weekend \rightarrow \neg Uni$ $PublicHoliday \rightarrow \neg Uni$ $Sick \rightarrow \neg Uni$ $Weekend \land VICdeadline \rightarrow Uni$

 $PhD \rightarrow Uni$ $Weekend \rightarrow \neg Uni$ $PublicHoliday \rightarrow \neg Uni$ $Sick \rightarrow \neg Uni$ $Weekend \land VICdeadline \rightarrow Uni$ NICTA

4 / 17

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

VIC= Very Important Conference

 $PhD \rightarrow Uni$ $Weekend \rightarrow \neg Uni$ $PublicHoliday \rightarrow \neg Uni$ $Sick \rightarrow \neg Uni$ $Weekend \land VICdeadline \rightarrow Uni$ $VICdeadline \land PartnerBirthday \rightarrow \neg Uni$

 $PhD \rightarrow Uni$ $Weekend \rightarrow \neg Uni$ $PublicHoliday \rightarrow \neg Uni$ $Sick \rightarrow \neg Uni$ $Weekend \land VICdeadline \rightarrow Uni$ $VICdeadline \land PartnerBirthday \rightarrow \neg Uni$

 $Phd \land (\neg Weekend \lor (Weekend \land VICdeadline \land \neg PartnerBirthday)) \land \neg Sick ... \rightarrow Uni$

イロンス 聞き イヨン 一日

Rule-based non-monotonic formalism

- Flexible
- Efficient (linear complexity)
- Directly skeptic semantics
- Argumentation semantics
- Constrictive proof theory
- Optimised/efficient implementations (1000000 rules)
- Extensible

・ロト ・ 同 ト ・ 三 ト ・ 三 ト

Rule-based non-monotonic formalism

- Flexible
- Efficient (linear complexity)
- Directly skeptic semantics
- Argumentation semantics
- Constructive proof theory
- Optimised/efficient implementations (1000000 rules)
- Extensible

・ロト ・ 同 ト ・ 三 ト ・ 三 ト

Defeasible Logic: Strength of Conclusions

- Derive (plausible) conclusions with the minimum amount of information.
 - Definite conclusions
 - Defeasible conclusions
- Defeasible Theory
 - Facts
 - Strict rules $(A \rightarrow B)$
 - Defeasible rules $(A \Rightarrow B)$
 - Defeaters (A → B)
 - Superiority relation over rules

イロン 不同 とくほう くほう 一頭

A proof is a finite sequence P = (P(1), ..., P(n)) of tagged literals satisfying four conditions

• $+\Delta q$, which is intended to mean that q is definitely provable (i.e., using only facts and strict rules);

イロト 不得 トイヨト イヨト 一臣

7 / 17

NICTA

7 / 17

- $+\Delta q$, which is intended to mean that q is definitely provable (i.e., using only facts and strict rules);
- $-\Delta q$, which is intended to mean that we have proved that q is not definitely provable in D;

- $+\Delta q$, which is intended to mean that q is definitely provable (i.e., using only facts and strict rules);
- $-\Delta q$, which is intended to mean that we have proved that q is not definitely provable in D;
- $+\partial q$, which is intended to mean that q is defeasibly provable in D;

◆□▶◆□▼◆□▼◆□▼ □ ●

- $+\Delta q$, which is intended to mean that q is definitely provable (i.e., using only facts and strict rules);
- $-\Delta q$, which is intended to mean that we have proved that q is not definitely provable in D;
- $+\partial q$, which is intended to mean that q is defeasibly provable in D;
- $-\partial q$ which is intended to mean that we have proved that q is not defeasibly provable in D.

・ロト・団・・ヨ・・ヨ・ うくつ

• Give an argument for the conclusion you want to prove

8 / 17

• Give an argument for the conclusion you want to prove

NICTA

8 / 17

くロンス 聞き くほどく ほとう

Onsider all possible counterarguments to it

Proving Conclusions in Defeasible Logic

① Give an argument for the conclusion you want to prove

NICTA

8 / 17

ヘロト 人間 トイヨト 人国トー

- Onsider all possible counterarguments to it
- 8 Rebut all counterarguments

Proving Conclusions in Defeasible Logic

- **(** Give an argument for the conclusion you want to prove
- Onsider all possible counterarguments to it
- Rebut all counterarguments
 - Defeat the argument by a stronger one
 - Undercut the argument by showing that some of the premises do not hold

イロト 不得 トイヨト イヨト 二日

Facts:
$$A_1$$
, A_2 , B_1 , B_2

Rules:
$$r_1:A_1 \Rightarrow C$$

 $r_2:A_2 \Rightarrow C$
 $r_3:B_1 \Rightarrow \neg C$
 $r_4:B_2 \Rightarrow \neg C$
 $r_5:B_3 \Rightarrow \neg C$

Superiority relation:

$$r_1 > r_3$$
$$r_2 > r_4$$
$$r_5 > r_1$$

Facts:
$$A_1$$
, A_2 , B_1 , B_2
Rules: $r_1:A_1 \Rightarrow C$
 $r_2:A_2 \Rightarrow C$
 $r_3:B_1 \Rightarrow \neg C$
 $r_4:B_2 \Rightarrow \neg C$
 $r_5:B_3 \Rightarrow \neg C$

Superiority relation:

$$r_1 > r_3$$
$$r_2 > r_4$$
$$r_5 > r_1$$

Phase 1: Argument for C

< □ > < □ > < □ > < □ > < □ > < □ > < □ >

Facts:
$$A_1$$
, A_2 , B_1 , B_2

Rules: $r_1:A_1 \Rightarrow C$ $r_2:A_2 \Rightarrow C$ $r_3:B_1 \Rightarrow \neg C$ $r_4:B_2 \Rightarrow \neg C$ $r_5:B_3 \Rightarrow \neg C$ Phase 1: Argument for C A₁ (Fact), $r_1 : A_1 \Rightarrow C$

Superiority relation:

$$r_1 > r_3$$
$$r_2 > r_4$$
$$r_5 > r_1$$

Facts:
$$A_1$$
, A_2 , B_1 , B_2

Rules:
$$r_1:A_1 \Rightarrow C$$

 $r_2:A_2 \Rightarrow C$
 $r_3:B_1 \Rightarrow \neg C$
 $r_4:B_2 \Rightarrow \neg C$
 $r_5:B_3 \Rightarrow \neg C$

Phase 1: Argument for C A₁ (Fact), $r_1 : A_1 \Rightarrow C$ Phase 2: Possible counterarguments

Superiority relation:

$$r_1 > r_3$$
$$r_2 > r_4$$
$$r_5 > r_1$$

ъ

くロンス 聞き くほどく ほとう

Facts:
$$A_1$$
, A_2 , B_1 , B_2

Rules:
$$r_1:A_1 \Rightarrow C$$

 $r_2:A_2 \Rightarrow C$
 $r_3:B_1 \Rightarrow \neg C$
 $r_4:B_2 \Rightarrow \neg C$
 $r_5:B_3 \Rightarrow \neg C$

Phase 1: Argument for *C* A_1 (Fact), $r_1 : A_1 \Rightarrow C$ Phase 2: Possible counterarguments $r_3 : B_1 \Rightarrow \neg C$ $r_4 : B_2 \Rightarrow \neg C$ $r_5 : B_3 \Rightarrow \neg C$

Superiority relation:

$$r_1 > r_3$$
$$r_2 > r_4$$
$$r_5 > r_1$$

9 / 17

Facts:
$$A_1$$
, A_2 , B_1 , B_2

Rules:
$$r_1:A_1 \Rightarrow C$$

 $r_2:A_2 \Rightarrow C$
 $r_3:B_1 \Rightarrow \neg C$
 $r_4:B_2 \Rightarrow \neg C$
 $r_5:B_3 \Rightarrow \neg C$

Superiority relation:

$$r_1 > r_3$$
$$r_2 > r_4$$
$$r_5 > r_1$$

Phase 1: Argument for C A_1 (Fact), $r_1 : A_1 \Rightarrow C$ Phase 2: Possible counterarguments $r_3 : B_1 \Rightarrow \neg C$ $r_4 : B_2 \Rightarrow \neg C$ $r_5 : B_3 \Rightarrow \neg C$ Phase 3: Rebut the counterarguments

Facts:
$$A_1$$
, A_2 , B_1 , B_2

Rules:
$$r_1:A_1 \Rightarrow C$$

 $r_2:A_2 \Rightarrow C$
 $r_3:B_1 \Rightarrow \neg C$
 $r_4:B_2 \Rightarrow \neg C$
 $r_5:B_3 \Rightarrow \neg C$

Superiority relation:

$$r_1 > r_3$$
$$r_2 > r_4$$
$$r_5 > r_1$$

Phase 1: Argument for C A_1 (Fact), $r_1 : A_1 \Rightarrow C$ Phase 2: Possible counterarguments $r_3: B_1 \Rightarrow \neg C$ $r_4: B_2 \Rightarrow \neg C$ $r_5: B_3 \Rightarrow \neg C$ Phase 3: Rebut the counterarguments r_3 weaker than r_1 r_4 weaker than r_2 r_5 is not applicable

イロン 不同 とくほう くほう 一頭

• The strength describes how strong is the relationships between the antecedent and the consequent of a rule.

2 The mode qualifies the conclusion of a rule.

ヘロマス 雪マス 回マ

- The strength describes how strong is the relationships between the antecedent and the consequent of a rule.
 - $A_1, \ldots, A_n \to B$ (*B* is an indisputable consequence of A_1, \ldots, A_n)
 - $A_1, \ldots, A_n \Rightarrow B$ (normally B if A_1, \ldots, A_n)
- The mode qualifies the conclusion of a rule.

ヘロト 人間 トイヨト 人国トー

O• NICTA

- The strength describes how strong is the relationships between the antecedent and the consequent of a rule.
 - $A_1, \ldots, A_n \to B$ (*B* is an indisputable consequence of A_1, \ldots, A_n)
 - $A_1, \ldots, A_n \Rightarrow B$ (normally B if A_1, \ldots, A_n)
- 2 The mode qualifies the conclusion of a rule.
 - $A_1, \ldots, A_n \Rightarrow_{BEL} B$ (an agent forms the belief B when A_1, \ldots, A_n are the case)

ヘロト 人間 とくほ とくほう

O• NICTA

- The strength describes how strong is the relationships between the antecedent and the consequent of a rule.
 - $A_1, \ldots, A_n \to B$ (*B* is an indisputable consequence of A_1, \ldots, A_n)
 - $A_1, \ldots, A_n \Rightarrow B$ (normally B if A_1, \ldots, A_n)
- 2 The mode qualifies the conclusion of a rule.
 - $A_1, \ldots, A_n \Rightarrow_{BEL} B$ (an agent forms the belief B when A_1, \ldots, A_n are the case)
 - $A_1, \ldots, A_n \Rightarrow_{INT} B$ (an agent has the intention B when A_1, \ldots, A_n are the case)

イロン 不同 とくほう くほう 一頭

O • NICTA

- The strength describes how strong is the relationships between the antecedent and the consequent of a rule.
 - $A_1, \ldots, A_n \to B$ (*B* is an indisputable consequence of A_1, \ldots, A_n)
 - $A_1, \ldots, A_n \Rightarrow B$ (normally B if A_1, \ldots, A_n)
- 2 The mode qualifies the conclusion of a rule.
 - $A_1, \ldots, A_n \Rightarrow_{BEL} B$ (an agent forms the belief B when A_1, \ldots, A_n are the case)
 - $A_1, \ldots, A_n \Rightarrow_{INT} B$ (an agent has the intention B when A_1, \ldots, A_n are the case)
 - $A_1, \ldots, A_n \Rightarrow_{OBL} B$ (an agent has the obligation B when A_1, \ldots, A_n are the case)

Conclusions in Basic Modal Defeasible Logic

O • NICTA

- +∆_{□i}q, which is intended to mean that q is definitely provable (i.e., using only facts and strict rules of mode □i);
- $-\Delta_{\Box_i}q$, which is intended to mean that we have proved that q is not definitely provable in D;
- +∂_{□_i}q, which is intended to mean that q is defeasibly provable in D using rules of mode □_i;
- -∂_{□_i} q which is intended to mean that we have proved that q is not defeasibly provable in D using rules of mode □_i.

イロト (同) (三) (三) (つ) (つ)

Conclusions in Basic Modal Defeasible Logic

- +Δ_{□i}q, which is intended to mean that q is definitely provable (i.e., using only facts and strict rules of mode □i);
- $-\Delta_{\Box_i}q$, which is intended to mean that we have proved that q is not definitely provable in D;
- +∂_{□_i}q, which is intended to mean that q is defeasibly provable in D using rules of mode □_i;
- -∂_{□_i} q which is intended to mean that we have proved that q is not defeasibly provable in D using rules of mode □_i.

We obtain $\Box_i p$ iff $+\partial_{\Box_i} p$.

・ロト・母ト・ヨト・ヨー シック

・ロト・雪・・雪・・雪・・

© NICTA 2008

• Choose the appropriate modalities

- Choose the appropriate modalities
- Create a defeasible consequence relation for each modality

くロンス 聞き くほう くほう

- Choose the appropriate modalities
- Create a defeasible consequence relation for each modality
- Identify relationships between modalities:

ヘロマス 雪マス 回マ

- Choose the appropriate modalities
- Create a defeasible consequence relation for each modality
 Identify relationships between modalities:

inclusion

 $\Box_1\phi\to\Box_2\phi$

くロンス 聞き くほど くほどう

- Choose the appropriate modalities
- Create a defeasible consequence relation for each modality
 Identify relationships between modalities:
 - inclusion

•

 $\Box_1 \phi, \Box_2 \neg \phi \rightarrow \bot$

 $\Box_1 \phi \rightarrow \Box_2 \phi$

イロト 不同 トイヨト イヨト 二ヨー

- Choose the appropriate modalities
- Create a defeasible consequence relation for each modality
 Identify relationships between modalities:
 - inclusion

$$\Box_1 \phi
ightarrow \Box_2 \phi$$

NICTA

12 / 17

イロト 不得 トイヨト イヨト 三臣

conflicts

 $\Box_1 \phi, \Box_2 \neg \phi \rightarrow \bot$

• conversions from one modality to another modality

$$\frac{A_1,\ldots,A_n \Rightarrow_{\Box_1} B}{\Box_2 A_1,\ldots,\Box_2 A_n \vdash \Box_2 B}$$

- Choose the appropriate modalities
- Create a defeasible consequence relation for each modality
 Identify relationships between modalities:
 - inclusion

$$\Box_1 \phi
ightarrow \Box_2 \phi$$

NICTA

12 / 17

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

conflicts

 $\Box_1 \phi, \Box_2 \neg \phi \rightarrow \bot$

• conversions from one modality to another modality

$$\frac{A_1,\ldots,A_n\Rightarrow_{\Box_1}B}{\Box_2A_1,\ldots,\Box_2A_n\vdash\Box_2B}$$

• Put in a mixer and shake well!

Inclusion $\Box_1 \rightarrow \Box_2$

- Give an argument for the conclusion you want to prove using rules for either □₁ or □₂
- ② Consider all possible counterarguments to it
- 8 Rebut all counterarguments
 - Defeat the argument by a stronger one (same as 1)
 - Undercut the argument by showing that some of the premises do not hold

イロト 不得 トイヨト イヨト 一臣

$\mathsf{Conflict}\ \Box_1 \to \neg \Box_2 \neg$

- **O** Give an argument for the conclusion you want to prove
- ② Consider all possible counterarguments to it using rules for both □₁ and □₂
- 8 Rebut all counterarguments
 - Defeat the argument by a stronger one
 - Undercut the argument by showing that some of the premises do not hold

<ロト <回 ト < 注 ト < 注 ト - 注

Conversion \square_1 to \square_2

- Give an argument for the conclusion you want to prove using rules for either □₂ or rules of mode □₁ st all premises are provable with mode □₂
- ② Consider all possible counterarguments to it
- 8 Rebut all counterarguments
 - Defeat the argument by a stronger one (same as 1)
 - Undercut the argument by showing that some of the premises do not hold (for rules of mode □₁ show that the premises are not provable with mode □₂)

ヘロト 人間 トイヨト 人国トー

NICT

© NICTA 2008

MDL in RuleML

Social Agent

```
<?xml version="1.0" encoding="UTF-8"?>
                                                                       Choose the appropriate
<ModeSet xmlns="http://www.example.org/modeset-ns"
                                                                         modalities
   xmlns:ruleml="http://www.ruleml.org/0.91/xsd"
   xmlns:xs="http://www.w3.org/2001/XMLSchema"
                                                                         Create a defeasible
                                                                         consequence relation for
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                                                                         each modality
   xsi:schemaLocation="http://www.example.org/xsd/ruleset.xsd" >
 <Mode id="BEL1" href="http://www.example.org/mode/belief" >
                                                                         Identify relationships
                                                                         between modalities:
    <ruleml:Ind>agent1</ruleml:Ind>
 </Mode>
                                                                             inclusion
 <Mode id="OBL" href="http://www.example.org/mode/obligation"/>
                                                                             conflicts
 <Mode id="INT1" href="http://www.example.org/mode/intention" >
                                                                             conversions from
    <ruleml:Ind>agent1</ruleml:Ind>
 </Mode>
 <Conflict between="OBL INT1"/>
                                                                        Put in a mixer and shake
 <Conversion from="BEL1" to="INT1"/>
                                                                         well
 <Conversion from="BEL1" to="OBL"/>
</ModeSet>
```


one modality to another modality

Implementation

- Apply transformation to remove defeaters
- Apply transformation to remove superiority relation
- Scan the set of rules for rules with empty body
- Take the consequent of rules with empty body and check whether there are no rules for its opposite. If so the consequent is provable
 - remove provable consequents from the body of rules
 - remove rules where the negation of provable consequents are in the body
- Scan the list of literals for literal not appearing as consequent of rules. The literal is non provable
- remove rules with non provable literals
- repeat

イロン 不同 とくほう くほう 一頭

Why Modal Defeasible Logic

- Modelling and monitoring contracts (and norms)
- Modelling BIOlogical agents
- Compliance of business processes
- Modelling workflows
- Extended with time (instant, intervals, duration and periodicity)
- Modelling norm dynamics

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Modelling and monitoring contracts (and norms)
- Modelling BIO logical agents (BDI D + O)
- Compliance of business processes
- Modelling workflows
- Extended with time (instant, intervals, duration and periodicity)
- Modelling norm dynamics

ヘロト ヘアト ヘビト ヘビト

</talk>

© NICTA 2008

・ロト・日本・日本・日本・日本・日本

17 / 17